
13.1 Introduction
In order to access or modify a file or directory, the correct permissions must be set. There are

three different permissions that can be placed on a file or directory: read, write, and execute.

The manner in which these permissions apply differs for files and directories, as shown in the

chart below:

Permission Effects on File Effects on Directory

read (r) Allows for file contents

to be read or copied.

Without execute permission on the

directory, allows for a non-detailed

listing of files. With execute

permission, ls -l can provide a

detailed listing.

write (w) Allows for contents to be

modified or overwritten.

Allows for files to be

added or removed from a

directory.

For this permission to work, the

directory must also have execute

permission.

execute (x) Allows for a file to be

run as a process,

although script files

require read permission,

as well.

Allows a user to change to the

directory if parent directories have

write permission as well.

When listing a file with the ls -l command, the output includes permission information:

sysadmin@localhost:~$ ls -l /bin/ls

-rwxr-xr-x. 1 root root 118644 Apr 4 2013 /bin/ls

Below is a refresher on the fields relevant to permissions.

File Type Field

- rwxr-xr-x. 1 root root 118644 Apr 4 2013 /bin/ls

The first character of this output indicates the type of a file. Recall if the first character is a -,

as in the previous example, this is a regular file. If the character was a d it would be a

directory.

Consider This

If the first character of the output of the ls -l command is an l, then the file is a symbolic

link. A symbolic link file "points to" another file in the file system.

To access a file that a symbolic link points to, you need to have the appropriate permissions

on both the symbolic link file and the file that it points to.

Permissions Field

- rwxr-xr-x. 1 root root 118644 Apr 4 2013 /bin/ls

After the file type character, the permissions are displayed. The permissions are broken into

three sets of three characters:

 rwxr-xr-x: The first set for the user who owns the file.

 rwxr-xr-x:The second set for the group that owns the file.

 rwxr-xr-x: The last set for everyone else, which means "anyone who is not

the user that owns the file or a member of the group that owns the file".

User Owner Field

-rwxr-xr-x. 1 root root 118644 Apr 4 2013 /bin/ls

After the link count, the file's user owner is displayed.

Group Owner Field

-rwxr-xr-x. 1 root root 118644 Apr 4 2013 /bin/ls

After the user owner field, the file group owner is displayed.

13.2 Changing Ownership

Changing the User Owner

Initially, the owner of a file is the user who creates it. The user owner can only be changed by

a user with root privileges using the chown command. By executing chown <newuser>

pathname, the root user can change the owner of the file <pathname> to

the <newuser> account.

Changing the Group Owner

When a user creates a file or directory, their primary group will normally be the group owner.

The id command reveals the current user's identity, current primary group and all group

memberships.

To create a file or directory that will be owned by a group different from your current

primary group, one option is to change your current primary group to another group you

belong to by using the newgrp command. For example, to change the current primary group

from student, to a secondary group called circles, execute: newgrp circles. After

executing that command, any new files or directories created would be group owned by

the circles group.

The newgrp command opens a new shell and assigns the primary group for that shell to the

specified group. To go back to the default primary group, use the exit command to close the

new shell that was started by the newgrpcommand.

Note: You must be a member of the group that you want to change to, additionally,

administrators can password protect groups.

Another option is for the user owner of the file to change the group owner by using

the chgrp command. For example, if you forgot to change your primary group

to circles before you created myfile, then you can execute the chgrp circles

myfile command.

The chgrp command does not change your current primary group, so when creating many

files, it is more efficient to just use the newgrp command instead of executing

the chgrp command for each file.

Note: Only the owner of the file and the root user can change the group ownership of a file.

13.3 Understanding Permissions
User and group owner information are important considerations when determining what

permissions will be effective for a particular user. To determine which set applies to a

particular user, first examine the user's identity. By using the whoamicommand or

the id command, you can display your user identity.

To understand which permissions will apply to you, consider the following:

 rwxr-xr-x: If your current account is the user owner of the file, then the first

set of the three permissions will apply and the other permissions have no

effect.

 rwxr-xr-x: If your current account is not the user owner of the file and

you are a member of the group that owns the file, then the group permissions

will apply and the other permissions have no effect.

 rwxr-xr-x: If you are not the user who owns the file or a member of the

group that owns the file, the third set of permissions applies to you. This last

set of permissions is known as the permissions for "others"; it is sometimes

referred to as the "world permissions".

For example, use the ls -l /etc command in the virtual terminal and examine the

permissions displayed.

Answer the following questions:

 Who owns the files in the /etc directory?

 Can members of the root group modify (write to) these files?

 Can users who are not root, nor members of the root group modify these files?

Consider This

Understanding which permissions apply is an important skill set in Linux. For example,

consider the following output of the ls -l command:

-r--rw-rwx. 1 bob staff 999 Apr 10 2013 /home/bob/test

In this scenario, the user bob ends up having less access to this file than members of

the staff group or everyone else. The user bob only has the permissions of r--. It doesn't

matter if bob is a member of the staffgroup; once user ownership has been established, only

the user owner's permissions apply.

13.4 Changing Basic File Permissions
The chmod command is used to change the permissions of a file or directory. Only the root

user or the user who owns the file is able to change the permissions of a file.

Consider This

Why is the command called chmod instead of chperm? Permissions used to be referred to as

"modes of access", so the command chmod really means "change the modes of access".

There are two techniques of changing permissions with the chmod command: symbolic and

octal (also called the numeric method). The symbolic method is good for changing one set of

permissions at a time. The octal or numeric method requires knowledge of the octal value of

each of the permissions and requires all three sets of permissions (user, group, other) to be

specified every time. When changing more than one permission set, the octal method is

probably the better method.

The Symbolic Method

To use the symbolic method of chmod you will use the following symbols to represent which

set of permissions you are changing:

Symbol Meaning

u user: the user who owns the file

g group: the group who owns the file

o others: people other than the user owner or member of the group

owner

a all: to refer to the user, group and others

Use the above symbols for who you are specifying along with an action symbol:

Symbol Meaning

+ Add the permission, if necessary

= Specify the exact permission

- Remove the permission, if necessary

After an action symbol, specify one or more permissions (r=read, w=write and x=execute),

then a space and the pathnames for the files to assign those permissions. To specify

permissions for more than one set, use commas (and no spaces) between each set.

Examples

Add execute permission for the user owner:

sysadmin@localhost:~$ chmod u+x myscript

Remove write permission from the group owner:

sysadmin@localhost:~$ chmod g-w file

Assign others to have only the read permission, removes write permission from the group

owner, and adds execute permission for the user owner:

sysadmin@localhost:~$ chmod o=r,g-w,u+x myscript

Assign everyone no permission:

sysadmin@localhost:~$ chmod a=- file

In the following example, a file is created with the touch command and then its permissions

are modified using the symbolic method:

sysadmin@localhost:~$ touch sample

sysadmin@localhost:~$ ls -l sample

-rw-rw-r-- 1 sysadmin sysadmin 0 Oct 17 18:05 sample

sysadmin@localhost:~$ chmod g-w,o-r sample

sysadmin@localhost:~$ ls -l sample

-rw-r----- 1 sysadmin sysadmin 0 Oct 17 18:05 sample

The Octal Method

Using the octal method requires that the permissions for all three sets be specified. To do so,

add together the octal value for the read, write and execute permission for each set:

Permission Octal Value

read (r) 4

write (w) 2

execute (x) 1

For example, set the permissions of a file to rwxr-xr-x. Using the values found in the

previous table, this would calculate as 7 for the user owner's permission, 5 for the group

owner's permissions and 5 for others:

These numbers are easy to derive by just adding together the octal value for the permissions

shown. So, for read, write and execute, add 4 + 2 + 1 to get 7. Or, for read, not write and

execute, add 4 + 0 + 1 to get 5.

Examples

Change permissions to rwxrw-r--:

sysadmin@localhost:~$ chmod 764 myscript

Change permissions to rw-r--r--:

sysadmin@localhost:~$ chmod 644 myfile

Change permissions to rwxr--r--:

sysadmin@localhost:~$ chmod 744 myscript

Change permissions to ---------:

sysadmin@localhost:~$ chmod 000 myfile

Considering the last example, what can be done with a file if there are no permissions for

anyone on the file? The owner of the file can always use the chmod command at some point in

the future to grant permissions on the file. Also, with write and execute permission -wx on

the directory that contains this file, a user can also remove it with the rm command.

In the following example, the permissions of the sample file that was created previously are

modified using the octal method:

sysadmin@localhost:~$ ls -l sample

-rw-r----- 1 sysadmin sysadmin 0 Oct 17 18:05 sample

sysadmin@localhost:~$ chmod 754 sample

sysadmin@localhost:~$ ls -l sample

-rwxr-xr-- 1 sysadmin sysadmin 0 Oct 17 18:05 sample

13.5 Permission Scenarios
Before discussing changing or setting permissions, a solid understanding of how permissions

really work is required. Many beginning Linux users get hung up on the short descriptions of

"read", "write" and "execute", but these words don't really define what a user can do with a

file or directory.

To understand how permissions behave, several scenarios will be presented. While you

review these scenarios, keep in mind the following table from a previous slide:

Permission Effect of File Effect on Directory

read (r) Allows for file contents

to be read or copied.

Without execute permission on the

directory, allows for a non-detailed

listing of files. With execute

permission, ls -l can provide a

detailed listing.

write (w) Allows for contents to be

modified or overwritten.

Allows for files to be

added or removed from a

directory.

For this permission to work, the

directory must also have execute

permission.

execute (x) Allows for a file to be

run as a process,

although script files

require read permission,

as well.

Allows a user to change to the

directory if parent directories have

execute permission as well

For each scenario below, a diagram is provided to describe the directory hierarchy. In this

diagram, key permission information is provided for each file and directory. For example,

consider the following:

The first box describes the / directory. The permissions are rwxr-xr-x, the user owner

is root and the group owner is root.

The second box describes the etc directory, which is a subdirectory under the / directory.

The third box describes the passwd file, which is a file under the etc directory.

Scenario #1

Question: Given the following diagram, what can the user bob do with the /home/bob/test

file?

Answer: The user bob can view and copy the file because this user has the permissions of r-

- on the file.

Scenario #2

Question: Given the following diagram, can the user bob delete the /home/bob/test file?

Answer: Yes. While it may seem like the user bob shouldn't be able to delete this file because

he has no permissions on the file itself, to delete a file a user needs to have write permission

in the directory that the file is stored in. File permissions do not apply when deleting a file.

Scenario #3

Question: Given the following diagram, can the user sue view the contents of

the /home/bob/test file?

Answer: No. Initially it may seem that the user sue should be able to view the contents of

the /home/bob/test file because all users have read permission on the file.

However, when checking permissions, it is important to check the permissions on the

directories "above" the file in question. In this case, only the user bob has the ability to "get

into" the /home/bob directory because only the user bob has execute permission on that

directory. If you can't get into a directory, it doesn't matter what the permissions are on the

files in that directory are set to.

Scenario #4

Question: Given the following diagram, who can delete the /home/bob/testfile?

Answer: All users on the system can. Recall that to delete a file, a user needs write and

execute permissions on the directory that the file is stored in. All users have write and

execute permission on the /home/bob directory. This is a huge mistake because now all

users can delete all files in bob's home directory.

13.6 Changing Advanced File Permissions
The following permissions are considered advanced because typically they are only set by the

administrator (the root user) and they perform very specialized functions. They can be set

using the chmod command, using either the symbolic or octal method.

Permission Symbol Octal Value Purpose

setuid on a

file
An s replaces

the x for the user

owner permissions

Set with u+s

4000 Causes an executable file

to execute under user

owner identity, instead of

the user running the

command.

setgid on a

file
An s replaces

the x for the group

owner permissions

Set with g+s

2000 Causes an executable file

to execute under group

owner identity, instead of

the user running the

command.

setgid on a

directory
An s replaces

the x for the group

owner permissions

Set with g+s

2000 Causes new files and

directories that are

created inside to be

owned by the group that

owns the directory.

sticky on a

directory
A t replaces

the x for the others

permissions

Set with o+t

1000 Causes files inside

directory to be able to be

removed only by the user

owner, or the root user.

Note: A leading 0, such as 0755, will remove all special permissions from a file or directory.

13.6.1 setuid Permission
The setuid permission is used on executable files to allow users who are not the root user to

execute those files as if they were the root user.

For example, the passwd command has the setuid permission. The passwdcommand modifies

the /etc/shadow file in order to update the value for the user's password. That file is not

normally modifiable by an ordinary user; in fact, ordinary users normally have no

permissions on the file.

Since the /usr/bin/passwd command is owned by the root user and has setuid permission,

it executes with a "duel personality", which allows it to access files either as the person who

is running the command or as the root user. When the passwd command attempts to update

the /etc/shadow file, it uses the credentials of the root user to modify the file (the

term credentials is akin to "authority").

The following demonstrates what this setuid executable file looks like when listed with ls -

l:

sysadmin@localhost:~$ ls -l /usr/bin/passwd

-rwsr-xr-x 1 root root 47032 Feb 17 2014 /usr/bin/passwd

Notice from the listing, the fourth character is an s, where there would normally be an x if

this file was just executable. When this character is a lowercase s, it indicates that both the

setuid and execute permissions are set. An uppercase Sin the fourth character position means

that the file does not have the execute permission, only the setuid permission. Without the

execute permission for the user owner, the setuid permission is ineffective.

13.6.2 setgid Permission

On a File

The setgid permission on a file works very similarly to the setuid permission, except that

instead of executing as the user who owns the file, setgid permission will execute as the

group that owns the file. The following displays the setgid executable

file /usr/bin/wall when listed with the ls -l command:

sysadmin@localhost:~$ ls -l /usr/bin/wall

-rwxr-sr-x 1 root tty 19024 Jun 3 20:54 /usr/bin/wall

Notice from the listing, the seventh character is an s where there would normally be an x for

the group execute permission. The lowercase s indicates that this file has both the setgid and

execute permission set. An S instead of the smeans the file lacks execute permission for the

group. Without execute permission for the group, the setgid permission will be ineffective.

Consider This

The way that the Linux kernel restricts both setuid and setgid executables is stricter than

some UNIX implementations. While Linux doesn't prevent users from setting these

permissions on script files, the Linux kernel will not execute scripts with setuid or setgid

permissions.

In order to effectively set these permissions, the Linux kernel will only honor them on

executable files that are in a binary format. This increases the security of the system.

On a Directory

In most cases, once an installation of a Linux distribution is complete, the files that require

setuid and setgid permission should have those permissions automatically set. While some of

the setuid and setgid permissions on files may be removed for security reasons, very seldom

are new setuid or setgid files created. On the other hand, it is fairly common for

administrators to add setgid to directories.

Using setgid on a directory can be extremely helpful for users trying to share a directory of

files with other users who are in different groups. To understand why, consider the following

scenario.

Users from different groups in your organization have asked the administrator to set up a

directory in which they can share files. For this example, there will be three users: joe who is

a member of the staff group, maya who is a member of the payroll group and steve who

is a member of the acct group. To accomplish this, the administrator takes the following

steps:

 Step #1: Create a new group for the three users:

 root@localhost:~# groupadd -r common

 Step #2: Add the users to the group:

 root@localhost:~# usermod -aG common joe

 root@localhost:~# usermod -aG common maya

 Step #3: Create a directory and make common the group owner:

 root@localhost:~# mkdir /shared

 root@localhost:~# chgrp common /shared

 Step #4: Make the directory writable for the group:

 root@localhost:~# chmod 770 /shared

This solution is almost perfect: the users joe, maya and steve can now access

the /shared directory and add new files. However, there is a potential problem: for example,

when the user joe makes a new file in the /shareddirectory, it will likely end up looking

like the following when displayed with the ls -l command:

-rw-rw----. 2 joe staff 8987 Jan 10 09:08 data.txt

The problem with this is that neither maya or steve are members of the staffgroup. As a

result, their permissions are ---, which means they can't access the contents of this file.

The joe user could have used the newgrp command to switch to the commongroup before

creating the file. Or, after creating the file, the joe user could have used the chgrp command

to change the group ownership to the common group. However, users won't always remember

to run these commands; some may not even know that these commands exist.

Instead of having to train users how to use the newgrp and chgrp commands, the

administrator can set up a directory with setgid permission. If a directory is setgid, then all

new files created or copied into the directory will automatically be owned by the group that

owns the directory. This means users don't have to use the newgrp or chgrp commands

because the group ownership will be managed automatically.

So, a better solution to this scenario would be to use the following command for Step #4:

root@localhost:~# chmod 2775 /shared

Listing the details of the directory after running the previous command would result in the

following output:

drwxrw s r-x. 2 root common 4096 Jan 10 09:08 /shared

After completing these steps, the joe, maya and steve users would now be able to easily

create files in the /shared directory that would automatically be owned by

the common group.

13.6.3 sticky bit Permission
The final advanced permission to discuss is the sticky permission, which is sometimes called

the "sticky bit". Setting this permission can be important to prevent users from deleting other

user's files.

Recall that to be able to delete a file, only the write and execute permission on the directory

are necessary. The write and execute permission is also necessary to add files to a directory.

So, if an administrator wants to make a directory where any user can add a file, the required

permissions mean that user can also delete any other user's file in that directory.

The sticky permission on a directory modifies the write permission on a directory so that only

specific users can delete a file within the directory:

 The user who owns the file

 The user who owns the directory that has the sticky bit set (typically this is the

root user)

 The root user

On a typical Linux installation there will normally be two directories that have the sticky

permission set by default: the /tmp and /var/tmp directories. Besides user home directories,

these two directories are the only locations that regular users have write permission by

default.

As their name suggests, these directories are intended to be used for temporary files. Any

user can copy files to the /tmp or /var/tmp directory to share with others.

Since the /tmp or /var/tmp directories have the sticky permission, you don't have to worry

about users deleting the shared files. However, there is a reason that these directories are

considered temporary: these directories are automatically purged of their contents on a

regular schedule. If you put a file in them, it will be removed automatically at some point in

the future.

When a directory has the sticky permission, a t will replace the x in the set of permissions for

others. For example, the following shows the output of the ls -ld /tmp command:

sysadmin@localhost:~$ ls -ld /tmp

drwxrwxrwt 1 root root 0 Oct 17 19:17 /tmp

The /tmp directory has an octal permission mode of 1777, or full permissions for everyone

plus the sticky permission on the directory. When the “others” permission set includes the

execute permission, then the t will be in lowercase. If there is an uppercase T, it means that

the execute permission is not present for others. This does not mean that the directory does

not have an effective sticky permission, however it does mean that the users who are affected

by the "others" permission can't change to this directory or create files in the directory.

There are cases in which users may not want to have execute for others, but still have the

sticky bit permission on a directory. For example, when creating shared directories with the

setgid permission. Consider the following command:

root@localhost:~# chmod 3770 /shared

Notice that the special permissions of setgid and stickybit can be added together,

the 2000 permission plus the 1000 permission gives you 3000 for the special permissions.

Add this to the basic permissions for the user, group and others; The owner and group have

full access and others get none. Listing the directory after making the changes with the ls -

ld /shared command results in the following output:

drwxrws-- T . 2 root common 4096 Jan 10 09:08 /shared

The uppercase T in the execute permissions position for others indicates there is no execute

permission for others. However, since multiple users of the group still have access, the sticky

permission is effective for the common group.

Consider This

The stat command can displays permissions both in symbolic and octal notation, as well as

user owner and group owner information. For example, look at the first line that starts

with Access:

sysadmin@localhost:~$ stat /tmp

 File: '/tmp'

 Size: 0 Blocks: 0 IO Block: 4096 directory

Device: 3ah/58d Inode: 1493 Links: 1

Access: (1777/drwxrwxrwt) Uid: (0/ root) Gid: (0/ root)

Access: 2014-09-18 23:37:24.364779732 +0000

Modify: 2014-10-17 19:17:01.430467987 +0000

Change: 2014-10-17 19:17:01.430467987 +0000

 Birth: -

13.7 Default File Permissions
Unlike other operating systems where the permissions on a new directory or file may be

inherited from the parent directory, Linux sets the default permissions on these new objects

based upon the value of the creator's UMASK setting. The umask command is used to both

set the UMASK value and display it.

The umask command is automatically executed when a shell is started. To have a persistent

setting for UMASK, a custom umask command can be added to the ~/.bashrc file.

To customize the UMASK value, it is important to understand what the UMASK value does.

The value of the UMASK value only affects the permissions placed on new files and

directories at the time they are created. It only affects the basic permissions for the user

owner, the group owner and others. The UMASK value does not affect the special advanced

permissions of setuid, setgid or sticky bit.

The UMASK is an octal value based upon the same values that you saw earlier in this

section:

Permission Octal Value

read 4

write 2

execute 1

none 0

When using the chmod command with octal values, add together the values for the user, the

group and others. However, the UMASK octal value used to specify permissions to

be removed. In other words, the octal value set for the UMASK is subtracted from the

maximum possible permission to determine the permissions that are set when a file or

directory is created.

Understanding UMASK for Files
By default, the maximum permissions that will be placed on a brand new file are rw-rw-rw-,

which can be represented octal as 666. The execute bit is turned off for security reasons. The

UMASK value can be used to specify which of these default permissions to remove for new

files. Three octal values will be provided: the value of the permissions to remove for the user

owner, the group owner and others.

For example, to set a UMASK value for new files that would result in full permissions for the

owner (result: rw-), remove or mask write permissions for the group owner (result: r--) and

remove all permissions from others (result: ---), calculate the UMASK value as follows:

 The first digit for the user owner would be a 0, which would not mask any of

the default permissions.

 The second digit would be a 2, which would mask only the write permission.

 The third digit would be a 6, which would mask the read and write

permissions.

As a result, the UMASK value 026 would result in new files having the permissions of rw-

r-----.

Another example: To set a UMASK value for new files that would remove write permissions

for the owner (result: r--) and remove read and write permissions for the group and others

(result: ---), calculate the UMASK value as follows:

 The first digit for the user owner would be a 2, which would mask only the

write permission.

 The second digit would be a 6, which would mask the read and write

permissions.

 The third digit would be a 6, which would mask the read and write

permissions.

As a result, the UMASK value 266 would result in new files having the permissions of r---

-----.

Understanding UMASK for Directories

The way the UMASK is applied to regular files is different from directory files. For security

reasons, regular files are not allowed to be executable at the time they are created. It would be

dangerous to allow for a file to be able to run as a process without a user explicitly assigning

the execute permission. So, regardless of whether you include the execute permission in the

UMASK value, it will not apply to regular files.

For directories, the execute permission is critical to properly access the directory. Without the

execute permission, you cannot navigate to a directory and the write permission is not

functional. Essentially, directories are not very useful at all without execute permission, so

new directories are allowed to be executable by default. The default permissions for new

directories is rwxrwxrwx or 777.

For example, if you wanted a UMASK value for new directories that would result in full

permissions for the user owner (result: rwx), remove or mask write permissions for the group

owner (result: r-x) and remove all permissions from others (result: ---), then you could

calculate the UMASK value as follows:

 The first digit for the user owner would be a 0, which would not mask any of

the default permissions.

 The second digit would be a 2, which would mask only the write permission.

 The third digit would be a 7, which would mask the read and write

permissions.

As a result, the UMASK value 027 would result in new directories having the permissions

of r-xr-x---.

Very Important: While the UMASK value effects the permissions for new files and

directories differently (because of different maximum permissions), there is not a separate

UMASK value for files and directories; the single UMASK value applies to both, as you can

see from the following table of commonly used UMASK values:

umask File Permissions Directory Permissions Description

002 664 or rw-rw-r-- 775 or rwxrwxr-x Default for ordinary

users

022 644 or rw-r--r-- 755 or rwxr-xr-x Default for root user

007 660 or rw-rw---- 770 or rwxrwx--- No access for others

077 600 or rw------- 700 or rwx------ Private to user

The following commands will display the current UMASK value, sets it to a different value

and displays the new value:

sysadmin@localhost:~$ umask

0002

sysadmin@localhost:~$ umask 027

sysadmin@localhost:~$ umask

0027

Note: The initial 0 in the UMASK value is for special permissions (setuid, setgid and sticky

bit). Since those are never set by default, the initial 0 is not necessary when setting the

UMASK value.

Chapter 13: File Permissions and Ownership
This chapter will cover the following exam objectives:

104.5: Manage file permissions and ownership

Weight: 3

Description: Candidates should be able to control file access through the proper use of

permissions and ownerships.

Key Knowledge Areas:

 Manage access permissions on regular and special files as well as directories

Section 13.4 | Section 13.6

 Use access modes such as suid, sgid and the sticky bit to maintain security

Section 13.6.1 | Section 13.6.2 | Section 13.6.3

 Know how to change the file creation mask
Section 13.7

 Use the group field to grant file access to group members

Section 13.4 | Section 13.6.2

Chapter 13: File Permissions and Ownership

chgrp

Command that is used to change the primary group of a file. Essentially it changes what

group is the owner of the FILE.
Section 13.1

chmod

Command that is used to change the mode bits of a FILE. The chmod utility can be used to

change the files permissions. For example setting the read, write, and execute bits.
Section 13.4

chown

Command that is used to change the ownership of a FILE. The chown utility can also be used

to change the primary group of a FILE as well.
Section 13.1

umask

Command that sets the calling process's file mode creation mask. The umask utility will set

the default permissions for FILEs when they are created.
Section 13.6

https://content.netdevgroup.com/contents/lpic1-s1/13/13.4
https://content.netdevgroup.com/contents/lpic1-s1/13/13.6
https://content.netdevgroup.com/contents/lpic1-s1/13/13.6.1
https://content.netdevgroup.com/contents/lpic1-s1/13/13.6.2
https://content.netdevgroup.com/contents/lpic1-s1/13/13.6.3
https://content.netdevgroup.com/contents/lpic1-s1/13/13.7
https://content.netdevgroup.com/contents/lpic1-s1/13/13.4
https://content.netdevgroup.com/contents/lpic1-s1/13/13.6.2
https://content.netdevgroup.com/contents/lpic1-s1/13/#c1
https://content.netdevgroup.com/contents/lpic1-s1/13/13.1
https://content.netdevgroup.com/contents/lpic1-s1/13/13.4
https://content.netdevgroup.com/contents/lpic1-s1/13/13.1
https://content.netdevgroup.com/contents/lpic1-s1/13/13.6

